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ABSTRACT 

Reliability (or) Accuracy of data is the most important thing in communication. 

There are different components that influence the nature of information when it is transferred 

over a communication channel like noise, fading etc. In a digital communication system we 

have to transmit more data via a noisy channel which results in vast no. of errors. To conquer 

these impacts channel coding schemes are introduced. Channel encoding and decoding 

techniques are helpful in error control and improves the reliability of the system and reduces 

the transmit power to achieve a given target BER and prevents re-transmission. 

The traditional block codes and conventional codes are commonly used in digital 

communication. To approach the theoretical limit for Shannon’s channel capacity, the length 

of a linear block code or constant lengths of convolutional codes have to be increased, which 

in turn makes the decoder complexity to become high and may render it physically 

unrealizable. The powerful turbo, LDPC and Polar codes approach the theoretical limit for 

Shannon’s channel capacity with feasible complexity for decoding. For next generation 

wireless communication Low Density Parity Check (LDPC) Codes are key channel coding 

techniques for improving BER in significant way. 

The major goal of this work is to examine the Bit-Error Rate (BER) and Frame Error 

Rate (FER) of several LDPC decoding algorithms such as Min-Sum, Normal Min-sum, Mod 

Min-Sum, Bit flip, Log-Sum Product. Based on simulation results, the Mod Min-Sum 

decoding algorithm performed better in terms of BER while the Log Sum-Product algorithm 

performed better in terms of FER. By varying the number of iterations (10,20) and expansion 

factor (2,32,64) the bit error rate and frame error rate of LDPC decoding methods were 

improved.
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CHAPTER-1 

INTRODUCTION 

Channel coding is the heart of digital communications and data storage. It is often 

used in digital communication systems to protect the digital information from noise and 

interference and reduce the number of bit errors. Channel coding is mostly accomplished by 

selectively introducing redundant bits into the transmitted information stream. These 

additional bits will allow detection and correction of bit errors in the received data stream and 

provide more reliable information transmission. 

Earlier the traditional block codes and conventional codes are commonly used 

in digital communications. To approach the theoretical limit for Shannon’s channel capacity, 

the length of a linear block code or constant lengths of convolutional codes have to be 

increased, which in turn makes the decoder complexity to become high and make it physically 

unrealizable. Later on the powerful Reed Solomon (RS), Bose Chaudhuri Hocquenghem 

(BCH) codes, Turbo codes approach the theoretical limit for Shannon’s channel capacity with 

feasible complexity for decoding [1,2]. 

Now (4G-5G), Low Density Parity Check (LDPC) and Polar Codes are key 

channel coding techniques for improving BER in a significant way. LDPC codes are also 

known as Gallager codes, in honor of Robert G.Gallager, who developed the LDPC concept 

in his doctoral dissertation at the Massachusetts Institute of Technology in 1960. LDPC code 

is a linear error correcting code, a method of transmitting a message over a noisy transmission 

channel. LDPC codes are finding increasing use in applications requiring reliable and highly 

efficient information transfer over bandwidth-constrained or return- channel-constrained links 

in the presence of corrupting noise. Implementation of LDPC codes has lagged behind that of 

other codes, notably turbo codes. 

5G is the coming fifth-generation wireless broadband technology based on the 

IEEE 802.11ac standard. 5G will provide better speeds and coverage than the current 4G. It 

operates with a 5Ghz signal and is set to offer speeds of up to 1 Gb/s for tens of connections. 

Commonly accepted use cases for 5G networks are eMBB (Enhanced Mobile Broadband), 

Massive IoT (Internet of Things) and URLLC (Ultra Reliable and Low Latency 

Communications). eMBB covers Internet access with high data rates to enable rich media 

applications, cloud storage and applications, and augmented reality for entertainment [3,4]. 
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1.1 MOTIVATION: 

Low-density parity-check codes (LDPC codes) are efficient channel coding codes that 

allow transmission errors to be corrected. 

LDPC codes are finding increasing use in applications requiring reliable and highly efficient 

information transfer over bandwidth-constrained or return-channel-constrained links in the 

presence of corrupting noise 

Earlier, turbo codes were introduced with iterative decoding algorithms. Utilizing 

iterative coding and decoding algorithms, it becomes possible to obtain performance within 

a few tenths of a dB to the Shannon limit for a bit error rate. Later LDPC were introduced. 

LDPC are comparable to turbo codes which are known to have channel capacity close to the 

Shannon limit. LDPC codes perform better than the turbo codes, as this scheme has better 

forward error correction properties and higher detection of incorrect decoding. LDPC codes 

got a lot of attention in recent years because of several properties. These codes have been 

chosen for real-time and high-throughput communications. Firstly, the LDPC based scheme 

is capacity approaching; secondly, these codes can be efficiently decoded by parallel iterative 

decoding algorithms with low latency. LDPC has got the attention of researchers to evaluate 

its performances for the development of applications. LDPC codes provide certain advantages 

over other codes. As compared to turbo codes, LDPC codes are not only simple in code 

structure but also have a fully parallelizable decoding implementation. LDPC codes, by using 

message passing algorithms and decoding algorithms have achieved excellent performance 

[5, 6]. 

The LDPC and turbo codes are comparable on design complexity. On one side, by 

defining the shape of the parity check matrix, it is possible to generate LDPC codes with 

different rate and block length, whereas, the rate of turbo codes is monitored largely by a 

puncturing schedule, so flexibility in rate is obtained only through considerable effort while 

designing. On the other side, LDPC codes have higher encoding complexity than turbo codes, 

being generically quadratic in the code dimension, although this can be reduced to some 

extent. 

LDPC codes have been proved of closely approaching the channel capacity. In 

particular using random coding arguments. Hence, we focus the work on five decoding 

algorithms to compare the bit error rate and frame error rate characteristics between the 

existing algorithms in LDPC. 
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1.2 PROJECT OBJECTIVE: 

The main objective of this project is to analyze the BER performance for different 

LDPC decoding techniques like Min-Sum, Normal Min-sum, Mod Min-Sum, Bit flip, Log-

Sum Product for next generation wireless communication systems. 

The BER and FER performance is analyzed considering the parameters like 

number of iterations, expansion factor, SNR values and number of blocks. 

 

1.3 PROJECT OUTLINE: 

This document is presented over the four remaining chapters. Chapter 2 gives an 

overview of channel coding techniques for improving performance of communication system. 

Chapter 3 describes briefly about the LDPC encoding and decoding techniques used in this 

project. Chapter 4 describes features and uses of MATLAB. Chapter 5 portrays the simulation 

results of performance of Bit Error Rate and Frame Error Rate for different SNR values with 

respect to different decoding algorithms. 
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CHAPTER-2 

CHANNEL CODING TECHNIQUES 

 

2.1 Channel coding techniques for improving performance of      

communication system 

2.1.1 Shannon’s Noisy Channel Coding Theorem 

Any channel affected by noise possesses a specific “channel capacity” C a rate of 

conveying information that can never be exceeded without error, but in principle, an error-

correcting code always exists such that information can be transmitted at rates less than C 

with an arbitrarily low BER. 

Fig: 2.1 Illustration of channel coding principle 

2.1.2 Channel Coding Principle 

The channel coding principle is to add redundancy to minimize error rate as 

illustrated in the below figure. 

Figure: 2.2 Digital Communication system with coding 
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2.1.3 Channel Coding Gain 

The bit error rate (BER) is the probability that a binary digit transmitted from the 

source received erroneously by the user. For required BER, the difference between the powers 

required for without and with coding is called the coding gain. A typical plot of BER versus 

Eb/N0 (bit energy to noise spectral density ratio) with and without channel coding is shown 

in Fig. 2.3. It can be seen that coding can arrive at the same value of the BER at lower 

Eb/N0 than without coding. Thus, the channel coding yields coding gain which is usually 

measured in dB. Also, the coding gain usually increases with a decrease in BER. 

2.2 Types of Channel Codes 

There are many types of channel codes, namely linear block codes, convolutional 

codes, turbo codes, LDPC codes and polar codes. 

2.2.1 Block Codes 

The data stream is broken into blocks of k bits and each k-bit block is encoded 

into a block of n bits with n > k bits as illustrated in Fig.2.3. The n-bit block of the channel 

block encoder is called the code word. The code word is formed by adding (n − k) parity check 

bits derived from the k message bits. 

Some important properties of block codes are defined as 

• Block code rate 

The block code rate (R) is defined as the ratio of k message bits and length of the code word 

n. 

 
• Code word weight 

R = k/n ... (2.1) 

The weight of a code word or error pattern is the number of nonzero bits in the code word or 

error pattern. For example, the weight of a code word c = (1, 0, 0, 1, 1, 0, 1, 0) is 4. 

 
 

 

                                                                 Figure: 2.3 Coded data stream 
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2.2.2 Linear Block Codes 

A block code C consisting of n-tuples {(c0, c1, … , cn-1)} of symbols from GF(2) 

is said to be binary linear block code if and only if C forms a vector subspace over GF(2). The 

code word is said to be systematic linear code word if each of the 2k code words is represented 

as linear combination of k linearly independent code words. 

2.2.3 Hamming Codes 

Hamming code is a linear block code capable of correcting single errors having 

a minimum distance 𝑑𝑚𝑖𝑛 = 3. It is very easy to construct Hamming codes. The party check 

matrix H must be chosen so that no row in 𝐻𝑇 is zero and the first (𝑛 − 𝑘)rows of 𝐻𝑇 form an 

identity matrix and all the rows are distinct. 

We can select 2𝑛−𝑘 − 1 distinct rows of H. Since the matrix 𝐻𝑇 has 𝑛rows, for all 

of them to be distinct, the following inequality should be satisfied 

            2𝑛−𝑘 − 1 ≥ 𝑛 …. (2.2) 

Implying that 
 

(𝑛 − 𝑘) ≥ log2(𝑛 + 1) … (2.3) 

𝑛 ≥ 𝑘 + log2(𝑛 + 1)   … (2.4) 

Hence, the minimum size n for the code words can be determined. 

 
 

2.2.4 Cyclic Codes 

An (n, k) linear block code C is said to be a cyclic code if for every code word 

c= (c0, c1, .......... , cn−2, cn−1) C, there is also a code word c1 =(cn−1, c0, c1, ........ , cn−2) 

obtained by shifting c cyclically one place to the right is also code word in C. 

2.2.5 Convolutional Codes 

In the convolutional coding, the message bits come in serially instead of large 

blocks. The name convolutional codes are due to the fact that the redundant bits are generated 

by the use of modulo-2 convolutions in a convolutional encoder. The convolutional 

encoder can be considered as finite-state machine consisting of an M-stage shift register, 

modulo-2 adders and multiplexers. The rate of a convolutional encoder with k inputs and n 

outputs is k/n. Often the manufacturers of convolutional code chips specify the code by 

parameters (n, k, L). The quantity L is called the constraint length of the code that 
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represents the maximum number of bits in a single output stream that can be affected by any 

input bit. 

2.2.6 Turbo Codes 

The groundbreaking codes called turbo codes. The best known convolution codes 

are mostly non-systematic. However, in turbo encodes, systematic convolutional codes are 

used. Turbo codes are generated by using the parallel concatenation of two recursive 

systematic convolutional (RSC) encoders. This chapter discusses turbo encoding, iterative 

turbo decoding, and performance analysis of turbo codes. 

2.2.7 Low Density Parity Check Codes 

Low density parity check (LDPC) codes are forward error-correction codes, 

invented by Robert Gallager in his MIT Ph.D. dissertation, 1960. The LDPC codes are ignored 

for long time due to their high computational complexity and domination of highly structured 

algebraic block and convolutional codes for forward error correction. A number of researchers 

produced new irregular LDPC codes which are known as new generalizations of Gallager’s 

LDPC codes that outperform the best turbo codes with certain practical advantages. LDPC 

codes have already been adopted in satellite based digital video broadcasting and long-haul 

optical communication standards. This chapter discusses LDPC Code Properties, construction 

of parity check matrix for regular and irregular LDPC codes, efficient Encoding and Decoding 

of LDPC Codes, performance analysis of LDPC Codes. 

2.2.8 Polar Codes 

A new channel coding has flourished known as polar coding, and it is a channel 

coding scheme that was invented by Erdal Arıkan at Bilkent University (Ankara, Turkey). 

Polar codes are said to achieve channel capacity in a given binary discrete memory less 

channel. This can be achieved only when the block size is large enough. The complexity of 

encoding and decoding is less and these codes can be successfully decoded. The main idea 

behind the polar codes invented by Arikan is the channel polarization. The channels can be 

categorized into good and bad by channel polarization. The recursive application of the 

polarization transformation makes the synthesized channels having better reliability for good 

channels and worse reliability for bad channels. The channels can be distinctly polarized with 

increase in code length and the information bits are transmitted over good channels, whereas 

the frozen bits are transmitted over bad channels. 
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CHAPTER 3 

LOW DENSITY PARITY CHECK CODES 

Low density parity check (LDPC) codes are forward error-correction codes, 

invented by Robert Gallager in his MIT Ph.D. dissertation, 1960. The LDPC codes are ignored 

for long time due to their high computational complexity and domination of highly structured 

algebraic block and convolutional codes for forward error correction. A number of 

researchers produced new irregular LDPC codes which are known as new generalizations of 

Gallager’s LDPC codes that outperform the best turbo codes with certain practical advantages. 

LDPC codes have already been adopted in satellite based digital video broadcasting and long-

haul optical communication standards. This chapter discusses LDPC Code Properties, 

construction of parity check matrix for regular and irregular LDPC codes, efficient Encoding 

and Decoding of LDPC Codes, performance analysis of LDPC Codes. 

 

3.1 LDPC Code Properties 

Low Density Parity Check (LDPC) code is a linear error-correcting code that has 

a parity check matrix H, which is sparse i.e. with less nonzero elements in each row and 

column. LDPC codes can be categorized into regular and irregular LDPC codes. When the 

parity-check matrix 𝐻(𝑛−𝑘)×𝑛 has the same number 𝑤𝑐 of ones in each column and the same 

number 𝑤𝑟 of once in each row, the code is a regular (𝑤𝑐, 𝑤𝑟). The original Gallager codes are 

regular binary LDPC codes. The size of H is usually very late, but the density of nonzero 

element is very low. LDPC code of length n, or denoted as an (𝑛, 𝑤𝑐, 𝑤𝑟)LDPC code. Thus, 

each information bit is involved with 𝑤𝑐 parity checks, and each parity-check bit is involved 

with 𝑤𝑟 information bits. For a regular code, we have thus𝑤𝑐 < 𝑤𝑟. If all rows are linearly 

independent, the code rate is 
(𝑤𝑟−𝑤𝑐) 

, otherwise it is k/n. Typically, 𝑤 ≥ 3. A parity check 

𝑤𝑐 
𝑐 

matrix with minimum column weight 𝑤𝑐 will have a minimum distance𝑑𝑚𝑖𝑛 ≥ 𝑤 𝑐 + 1. When 

𝑤𝑐 ≥ 3, there is atleast one LDPC code whose minimum distance 𝑑𝑚𝑖𝑛 grows linearly with the 

block length n [1]; thus a longer code length yields a better coding gain. Most regular 

LDPC codes are constructed with 𝑤𝑐 and 𝑤𝑟 on the order of 3 or 4. 

3.2 Construction of Parity Check Matrix H 

3.2.1 Gallager Method for Random Construction of H for Regular Codes 

In this method, the transpose of regular (𝑛, 𝑤𝑐, 𝑤𝑟) parity check matrix H has the form 
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                                                                  𝐻𝑇 = [𝐻𝑇, 𝐻𝑇, … . , 𝐻𝑇 ] … (3.1) 
1 2 𝑤𝑐 

The matrix 𝐻1has n columns and 𝑛⁄𝑤𝑟 rows. The 𝐻1 contains a single 1 in each column and 

contains 1s in its ith row from column (𝑖 − 1)𝑤𝑟 + 1 to column𝑖 𝑤𝑟. Permuting randomly 

the columns of 𝐻1 with equal probability, the matrices 𝐻2 to 𝐻𝑤𝑐are obtained. 

The parity check matrix for (n = 20,𝑤𝑐 = 3,𝑤𝑟= 4)code constructed by Gallager is given as 
 

 

                                                       𝐻 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]

 
 
 
 
 
 
 
 
 
 
 
 
 

…(3.2) 

 
 

The following MATLAB program can be used to generate Gallager regular parity check 

matrix H with different code rates. 

3.2.2 Algebraic Construction of H for Regular Codes 

The construction of the parity check matrix H using algebraic construction as follows. 

Consider an identity matrix where a > (𝑤𝑐 − 1)(𝑤𝑟 − 1) and obtain the following matrix by 

cyclically shifting the rows of the identity matrix 𝐼𝑎by one position to the right. 

    

                                                                    𝐴 =

[
 
 
 
 
0 1 0 0…0
0 0 1 0…0
0 0 0 1…0
0 0 0 0…1
1 0 0 0…0]

 
 
 
 

…(3.3)

Defining 𝐴0 = 𝐼𝑎the parity check matrix H can be constructed as 

𝐻 =

[
 
 
 

𝐴0 𝐴0 𝐴0

𝐴0 𝐴1 𝐴2

…
…

𝐴0

𝐴(𝑤𝑟−1)

𝐴0 𝐴2 𝐴4 … 𝐴2(𝑤𝑟−1)

                  𝐴0 𝐴(𝑤𝑟−1) 𝐴2(𝑤𝑟−1)
…
… 𝐴(𝑤𝑟−1)(𝑤𝑟−1)

]
 
 
 

… (3.4) 
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The constructed H matrix has 𝑤𝑐𝑎rows and 𝑤𝑟𝑎columns, and it is of a regular (𝑤𝑟𝑎, 𝑤𝑐, 𝑤𝑟) 

having the same number of 𝑤𝑟 ones in each row and the same number of 𝑤𝑐 ones in each 

column. It is four cycle free construction. The algebraic LDPC codes are easier for decoding 

than random codes. For intermediate n, well designed algebraic codes yields a low BER. 

3.2.3 Random Construction of H for Irregular Codes 

In the random construction of the parity check matrix H, the matrix is filled with ones and 

zeros randomly satisfying LDPC properties. 

An example of parity check matrix for irregular LDPC code is 

 

                                                        𝐻 =

[
 
 
 
 
1 1 0 1 1 0 0 1 0 0
0 1 1 0 1 1 1 0 0 0
0 0 01 0 0 0 1 1 1
1 1 0 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1 0 1]

 
 
 
 

… (3.5) 

 

 

3.3 Representation of Parity Check Matrix Using Tanner Graphs 

 
The Tanner graph of the parity check matrix H is a bipartite graph. if variable i participates in 

the 𝑗𝑡ℎ parity-check constraint, then check node j is connected to variable node i. 

3.3.1 Cycles of Tanner Graph 

Consider the following parity-check matrix 

 

𝐻 = [

1  1 0 1 1 0
1 0 0 0 1 0
0 0 1 0 0 1
0 1 1 1 0 1

] 

 

The Tanner graph of the H matrix is shown in Fig.3.2. A sequence of connected nodes starting 

and ending at the same node with no node more than once is a cycle of a Tanner graph. The 

number of edges in a cycle is called cycle length and the smallest size of the cycle in a graph 

represents the girth of the graph. Cycles of length 4 situations arise where pairs of rows share 

1s in a particular pair of columns of the above H matrix. A cycle of length 4 is shown in bold 

in Fig.3.2. The minimum lower bound distance for four cycle free (𝑤𝑐,𝑤𝑟) regular LDPC code 

parity check matrix with girth g, is given by 

 

𝑑𝑚𝑖𝑛 {
1 + 𝑤𝑐 + 𝑤𝑐(𝑤𝑐 − 1) + 𝑤𝑐(𝑤𝑐 − 1)2 + ⋯ + 𝑤𝑐(𝑤𝑐 − 1)

𝑔−4
4  𝑓𝑜𝑟 𝑜𝑑𝑑 𝑔/2

1 + 𝑤𝑐 + 𝑤𝑐(𝑤𝑐 − 1) + 𝑤𝑐(𝑤𝑐 − 1)2 + ⋯+ 𝑤𝑐(𝑤𝑐 − 1)
𝑔−8
4   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}… (3.7) 

 

                          

                   Thus the minimum distance can be increased by increasing the girth or the column weight.
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                                          Fig: 3.1 Tanner graph of  H matrix of example: 3.2 
 

 
 

                                                                                                                                     Check nodes 

 

 

 

                                                                                                                                      Bit nodes 
 

 
 

                                         Fig: 3.2 A tanner graph with a cycle of length 4 

 
3.3.2 Detection and Removal of Girth 4 of a Parity Check Matrix 

 
If the Tanner graph of a parity check matrix contains no loops then this decoding is quickly 

computable. Unfortunately, LDPCs have loopy graphs, and so the algorithm needs to be 

repeatedly iterated until it converges to a solution. The effect of girth on the performance of 

LDPC codes can be reduced by choosing the codes having Tanner graphs with longer girths. 

However, longer girths are not helpful for finite length codes. A girth of 6 is sufficient and 

hence the removal of girth 4 is a required. A lemma states that the H matrix has no girth 4, if 

and only if all the entries of the matrix [𝐻𝑇𝐻] are 1s except the diagonal line. A standard 

approach is to search the parity-check matrix H forming a rectangle of four 1s in the matrix. 

Eliminating the rectangle by reshuffling some elements around while preserving the other 

relevant properties of the matrix is equivalent to removing a girth 4 from the Tanner graph. 

 

3.4 LDPC Encoding 

 
3.4.1 Reprocessing Method 

 
For coding purposes, we may derive a generator matrix G from the parity check matrix H for 

LDPC codes by means of Gaussian elimination in modulo-2 arithmetic. Since the matrix G 

is generated once for a parity check matrix, it is usable in all encoding of messages. As such 

this method can be viewed as the pre-processing method. 
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1-by-n code vector c is first partitioned as 

 
𝐶 = [𝑏 ∶ 𝑚] … (3.8) 

 
Where m is k by 1 message vector, and b is the n−k by 1 parity vector correspondingly, the 

parity check matrix H is partitioned as 
 

𝐻𝑇 = [
𝐻1

…
𝐻2

]… (3.9) 

 

Where H1 is a square matrix of dimensions (𝑛 − 𝑘) × (𝑛 − 𝑘), 𝐻2 and is a rectangular 

matrix of dimensions 𝑘 × (𝑛 − 𝑘) transposition symbolized by the superscript T is used in 

the partitioning of matrix H or convenience of representation. 

Imposing the constraint 𝐶𝐻𝑇 = 0. 

We may write 

                      

[𝑏:𝑚] [
𝐻1

…
𝐻2

] = 0  … (3.10) 

Or equivalently, 
 

𝑏𝐻1 + 𝑚𝐻2 = 0 … (3.11) 

The vectors m and b are related by 

𝑏 = 𝑚𝑃 … (3.12) 

 
Where, P is the coefficient matrix. For any nonzero message vector m, the coefficient matrix 

of LDPC codes satisfies the condition 

 
𝑃𝐻1 + 𝐻2 = 0 … (3.13) 

 
Which holds for all nonzero message vectors and, in particular, in the form [0 ... 0 1 0 ... 0 ] 

that will isolate individual rows of the generator matrix. Solving 

Eq. (8.13) for matrix P, we get 

 
𝑃 = 𝐻2 𝐻1−1 … (3.14) 

 
Where 𝐻1−1 is the inverse matrix of 𝐻1, which is naturally defined in modulo-2 arithmetic. 

Finally, the generator matrix of LDPC codes is defined by 

 
𝐺 = [𝑃 ∶ 𝐼𝑘] = [𝐻2 𝐻1−1 ∶ 𝐼𝑘] … (3.15) 

 
Where 𝐼𝑘 is the 𝑘 by 𝑘 identity matrix. The code word can be generated as 

 
𝐶 = 𝑚𝐺 … (3.16) 
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3.5 Efficient Encoding of LDPC Codes 

 
The pre-processing method discussed in Sect. 3.4.1 for finding a generator matrix G for a 

given H can be used for encoding any arbitrary message bits vector of size 1 × m. However, 

it has a complexity of (𝑛2) . LDPC code can be encoded using the parity-check matrix directly 

by using the efficient encoding method which has a complexity of O(n). The stepwise 

procedure of efficient coding of LDPC coding is as follows: 

 
Step 1: By performing row and column permutations, the non-singular parity check matrix 

H is to be brought into a lower triangular form indicated in Fig. 3.3 More precisely, the H 

matrix is brought into the form 

𝐻𝑡 = [
𝐴 𝐵 𝑇
𝐶 𝐷 𝐸

]… (3.17) 

 
 

with a gap length g as small as possible. 

 
Where A is (m − g) × (n − m) matrix, B is (m − g) × g matrix, T is (m − g) × (m − g) matrix, 

C is g × (n − m) matrix, D is g × g matrix and E is g × (m − g) matrix. All of these matrices 

are sparse and T is lower triangular with ones along the diagonal. 
 

 

m 

 

                                                                                                           n 
 
 

                           Fig: 3.3 The parity-check matrix in approximate lower triangular form 

 

       𝐒𝐭𝐞𝐩 𝟐: Premultiply 𝐻𝑡  by [
𝐼𝑚−𝑔 0

−𝐸𝑇−1 𝐼𝑔
] 

 

                          

                            In order to check that −𝐸𝑇−1 𝐵 + 𝐷is non-singular. It is to be ensured 

by performing                                                        column permutations further. 

m-g 

g 

 

 
A 

 

 
B 

 
0 

T 

 
 

C 

 

D 

 
 

E 

 

n-m g m-g 
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1 

Step 3: Obtain𝑃1 using the following 

 
                                                         𝑃𝑇 = ∅−1(−𝐸𝑇−1 𝐴 + 𝐶)𝑠𝑇 … (3.19) 

 

Where 

∅ = −𝐸𝑇−1 𝐵 + 𝐷and s is message vector. 
 

Step 4: Obtain𝑃2 using the following 

2T =  −T − 1(AsT +  BP1T)  
 

Step 5: Form the code vector 𝑐 as 

 

                                                                   𝑐 = [𝑠 𝑝1 𝑝2] … (3.21) 

 
𝑝1holds the first g parity and 𝑝2 contains the remaining parity bits. 

 
3.6 LDPC Decoding 

 
In the LDPC decoding, the notation 𝐵𝑗 is used to represent the set of bits in the parity check 

equation of H, and the notation 𝐴𝑖 is used to represent the parity check equations for the i th 

bit of the code. Consider the following parity check matrix 

𝐻 = [

1 1 1 0 0 0
1  0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

]… (3.22) 

 
 

For the above parity check matrix, we get 

 
𝐵1 = {1,2,3}, 𝐵2 = {1,4,5}, 𝐵3 = {2,4,6}, 𝐵4 = {3,5,6}, 

 
𝐴1 = {1,2}, 𝐴2 = {1,3},   𝐴3 = {1,4},   𝐴4 = {2,3},   𝐴5 = {2,4}, 𝐴6 = {3,4} 

 
3.6.1 LDPC Decoding on Binary Erasure Channel Using Message Passing 

Algorithm 

 
The message passing algorithms are iterative decoding algorithms which passes the messages 

back and forward between the bit and check nodes iteratively until the process is stopped. The 

message labeled𝑀𝑖indicates 0 or 1 for known bit values and e for erased bit the stepwise 

procedure for LDPC decoding on BEC is as follows: 

 
Step 1: Set M= y, find 𝐵𝑗 and 𝐴𝑖 of H Step 

2:  𝑖𝑡𝑒𝑟 = 1 

Step 3: If all the messages into check j other than 𝑀𝑖 are known, compute all check sums by 
using the following expression 

 
                                                         𝐸𝑖,𝑗 =  ∑𝑖′∈ 𝐵𝑗,𝑖′≠𝑖(𝑀𝑖′𝑚𝑜𝑑 2)… (3.23) 
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Else 𝐸𝑖,𝑗= e 

Step 4: If 𝑀𝑖 = 𝑒 and if 𝑗 ∈ 𝐴𝑖 subject to 𝐸𝑖,𝑗 ≠ 𝑒, set 𝑀𝑖 = 𝐸𝑖,𝑗. 

Step 5: If all 𝑀𝑖 are known or 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟𝑚𝑎𝑥, stop, else 

Step 6: 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1, go to step 3. 

 
3.6.2 Bit-Flipping Decoding Algorithm 

 
The received symbols are hard decoded into 1s and 0s to form a binary received vector y. In 

each iteration, it computes all check sums, as well as the number of unsatisfied parity checks 

involving each of the n bits of the vector y. Next, the bits of y are flipped if they involve in 

the largest number of unsatisfied parity checks. The process is to be repeated until all 

check sums are satisfied or reaches a predetermined number of iterations. The stepwise 

procedure of the Bit-flipping decoding algorithm is as follows: 

 
Step 1: Set M= y, define 𝐵𝑗 to represent the jth parity check equation of H 

Step 2: 𝑙 = 0 

Step 3: Compute all check sums by using the following expression 

 
                                                                          𝐸𝑖,𝑗 =  ∑𝑖′∈ 𝐵𝑗,𝑖′≠𝑖(𝑀𝑖′ 𝑚𝑜𝑑 2)… (3.24) 

 
Step 4: Compute the number of unsatisfied parity checks involving each of n bits of 

message. 

Step 5: Flip the bits of message when they are involved in largest number of unsatisfied 

parity checks. The flipping on ith bit can be performed by using 

 
                                                                           𝑀𝑖 = (𝑦𝑖 + 1 𝑚𝑜𝑑 2)… (3.25) 

 
Step 6: Compute s as follows 

𝑠 = (𝑀𝐻𝑇) 𝑚𝑜𝑑 2… (3.26) 

Step 7: If 𝑠 = 0 𝑜𝑟 𝑙 = 𝑙𝑚𝑎𝑥, stop, else 

Step 8: 𝑙 = 𝑙 + 1, go to step 3. 

 
3.7 Sum Product Decoding 

 
The sum product algorithm is similar to the bit-flipping algorithm as described in the previous 

section, but the messages representing each decision (whether the bit value is 1 or 0) are now 

probabilities. Bit-flipping decoding accepts an initial hard decision on the received bits as 

input and the sum-product algorithm is a soft decision message passing algorithm which 

accepts the probability of each received bit as input. The input channel or received bit 

probabilities are known in advance before the LDPC decoder was operated and so they are 

also called as the a priori probabilities of the received bit. In the sum product decoder, the 

extrinsic information passed between nodes is also probabilities. The extrinsic information 

between check node j and bit node i is denoted by 𝐸𝑗,𝑖. The 𝐸𝑗,𝑖 gives the probability for the 

bit 𝑐𝑖to be 1 that causes the parity check equation j is satisfied. The 𝐸𝑗,𝑖 
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𝑗,𝑖 

cannot be defined if the bit i not included in j as there will be no extrinsic information 

between check node j and bit node i. 

The probability that an odd number of the bits in that parity check equation are 1s is given 

by 

 

𝑃𝑗,𝑖
𝑒𝑥𝑡 =

1

2
−

1

2
∏𝑖′ ∈𝐵𝑗,𝑖′≠𝑖(1 − 2𝑃𝑗,𝑖′)… (3.27) 

 

 

Which is the probability that a parity check equation is satisfied for the bit 𝑐𝑖to be 1. The 

probability that the parity check equation is satisfied for the bit 𝑐𝑖to be 0 becomes 1 − 𝑃𝑒𝑥𝑡. 

 
The metrics for a binary variable is represented by the following log likelihood ratio (LLR) 

 
                                                        𝐿(𝑥) = log 

𝑝(𝑥=0)
… (3.28) 

                                                                                                𝑝(𝑥=1) 

 

where by log we mean loge. The sign of L(x) provides a hard decision on x and magnitude 

|𝐿(𝑥)| is the reliability of this decision. Translating from log likelihood ratios back to 

probabilities, 
 

𝑝(𝑥 = 1) = 
𝑒−𝐿(𝑥)

 

1+𝑒−𝐿(𝑥) 

 

𝑝(𝑥 = 0) = 
𝑒𝐿(𝑥)

 

1+𝑒−𝐿(𝑥) 

… (3.29) 

 

… (3.30) 

 

when probabilities need to be multiplied, log likelihood ratios need only be added and by this 

the complexity of the sum product decoder is reduced. This makes the benefits of the log 

arithmetic representation of probabilities. The extrinsic information from check node j to bit 

node i is expressed as a log likelihood ratio, 

 

𝐸𝑗,𝑖 = 𝐿(𝑃𝑗,𝑖
𝑒𝑥𝑡 log

1 − 1 − 𝑝𝑗,𝑖
𝑒𝑥𝑡

𝑝𝑗,𝑖
𝑒𝑥𝑡 …(3.31) 

 

Now 

 

𝐸𝑗,𝑖 = log

1
2 +

1
2

∏ 𝑖′ ∈𝐵𝑗,𝑖
′ ≠ 𝑖(1 − 2𝑃𝑗,𝑖′)

1
2 −

1
2

∏ 𝑖′ ∈𝐵𝑗,𝑖′ ≠ 𝑖(1 − 2𝑃𝑗,𝑖′)
 

 

= log
1 + ∏ 𝑖′ ∈𝐵𝑗,𝑖

′ ≠ 𝑖(1 − 2
𝑒

−𝑀
𝑗,𝑖′

1 + 𝑒
−𝑀𝑗,𝑖′

)

1 − ∏ 𝑖′ ∈𝐵𝑗,𝑖′ ≠ 𝑖(1 − 2
𝑒

−𝑀
𝑗,𝑖𝑖

1 + 𝑒
−𝑀𝑗,𝑖′

)

 

𝑃 
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= log

1 + ∏ 𝑖′ ∈𝐵𝑗,𝑖
′ ≠ 𝑖 (

𝑒
−𝑀

𝑗,𝑖′

1 + 𝑒−𝑀𝑗,𝑖′
))

1 − ∏ 𝑖′ ∈𝐵𝑗,𝑖′ ≠ 𝑖 (
𝑒

−𝑀
𝑗,𝑖𝑖

1 + 𝑒
−𝑀𝑗,𝑖′

))

… (3.32) 

 

Where 𝑀𝑗,𝑖 ′ ≜ 𝐿(𝑃𝑗,𝑖 ′) = log 1−𝑃 𝑗,𝑖 ′ 𝑃𝑗,𝑖 

 

Using the relationship 

 

tanh
1

2
log (

1 − 𝑝

𝑝
) = 1 − 2𝑝 … (3.33) 

 

Gives  

 

𝐸𝑗,𝑖 = log
1 + ∏ 𝑖′ ∈𝐵𝑗,𝑖

′ ≠ 𝑖
tanh(𝑀

𝑗,𝑖′
/2)

1 − ∏ 𝑖′ ∈𝐵𝑗,𝑖′ ≠ 𝑖
tanh(𝑀𝑗,𝑖′/2)

…(3.34) 

 

Alternatively, using the relationship 

 

2 tanh−1 𝑝 = log
1 + 𝑝

1 − 𝑝
… (3.35) 

 

𝐸𝑗,𝑖 = 2tanh−1 ∏𝑖′ ∈𝐵𝑗,𝑖′≠𝑖 tanh(
𝑀𝑗,𝑖′

2
)… (3.36) 

 

The above equation is numerically challenging due to the presence of the product of the 𝑡𝑎𝑛ℎ 

and𝑡𝑎𝑛ℎ −1 functions. Following Gallager, we can improve the situation as follows. First, 

factor 𝑀𝑗,𝑖 into its sign and magnitude (or bit value and bit reliability); 

 
𝑀𝑗𝑖 = 𝛼𝑗𝑖𝛽𝑗𝑖  … (3.37) 

 

𝛼𝑗𝑖 = sign(𝑀𝑗𝑖)… (3.38) 

 

𝛽𝑗𝑖 = |𝑀𝑗𝑖| … (3.39) 
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𝑖 

 

So that eq.(3.39) may be rewritten as 

 

tanh (
1

2
𝑀𝑗𝑖) =∏ 𝛼𝑗𝑖 ∏ tanh(

1

2
𝛽𝑗𝑖)… (3.40)

𝑖′∈ 𝐵𝑗,𝑖
′≠𝑖𝑖′

 

               We then have 

 

𝐸𝑗,𝑖 = ∏𝛼𝑗𝑖 . 2 tanh−1 (∏tanh (
1

2
𝛽𝑗𝑖)

𝑖′

)

𝑖

 

 

= ∏𝛼𝑗𝑖 . 2 tanh−1 𝑙𝑜𝑔−1 log (∏tanh (
1

2
𝛽𝑗𝑖)

𝑖′

)

𝑖

 

 

∏ 𝛼𝑗𝑖 . 2 tanh−1 𝑙𝑜𝑔−1 ∑ log (
1

2
𝛽𝑗𝑖)… (3.41)

𝑖′𝑖′
 

 

                    This yields a new from for Eq. 3.41 as 

 

𝐸𝑗𝑖 = ∏𝛼𝑗𝑖′

𝑖′

 . ∅ (∑ ∅
𝑖′

(𝛽𝑗𝑖′))… (3.42) 

                      Where ∅(𝑥) is defined as 

∅(𝑥) = − log [𝑡𝑎𝑛ℎ
𝑥

𝑦
] = 𝑙𝑜𝑔 (

𝑒𝑥+1

𝑒𝑥−1
) … (3.43) 

 
                     Using the fact that ∅ −1 (𝑥) = ∅(𝑥) when x > 0. 

 

Each bit node has access to the input LLR, 𝐿𝑖, and to the LLRs from every connected check 

node. The total LLR of the ith bit is the sum of these LLRs: 
 

𝐿𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑖 + ∑ 𝐸𝑗𝑖𝑗∈𝐴𝑖

 … (3.44) 

The hard decision on the received bits is simply given by the signs of the 𝐿𝑡𝑜𝑡𝑎𝑙 . Check whether 

the parity check equations are satisfied (thus 𝑐 𝐻𝑇 = 0   is also a stopping criterion for sum 

product decoding), if not satisfied update 𝑀𝑗𝑖 

𝑀𝑗𝑖 = ∑ 𝐸𝑗′𝑖 + 𝐿𝑖𝑗′∈𝐴𝑖,𝑗′≠𝑖
 …  (3.45) 

 
The algorithm outputs the estimated a posteriori bit probabilities of the received bits as log 

likelihood ratios. 

The sum-product decoder immediately stops whenever a valid codeword has been found by 

a checking of whether the parity check equations are satisfied (i.e., 𝑐 𝐻𝑇 = 0 ) or allowed 

maximum number of iterations achieved. The decoder is initialized by setting all VN messages 

𝑀𝑗𝑖 equal to 
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For all j,I for which ℎ𝑖𝑗 = 1. Here, 𝑦𝑗represents the channel value that was actually received, 

that is, it is not a variable here. The 𝐿𝑖for different channels can be computed as 

 
BEC 

In this case, 𝑦𝑗 ∈ {0,1, 𝑒} 
 

 

𝐿𝑖 = 𝐿(𝑐\𝑦𝑖) = 𝑙𝑜𝑔 (
𝑃𝑟(𝑐𝑖=0|𝑦𝑖)

𝑃𝑟(𝑐𝑖=1|𝑦𝑖)
) … (3.46) 

   

𝐿𝑖 = 𝐿(𝑐\𝑦𝑖) =  {

+∞𝑦𝑗 = 0,

−∞𝑦𝑗 = 1,

0    𝑦𝑗 = 𝑒.
 … (3.47) 

 

BSC 

 
In this case, 𝑦𝑗 ∈ {0,1}, we have 

 
 

 

𝐿𝑖 = 𝐿(𝑐𝑖\𝑦𝑖) =  (−1)𝑦𝑖𝑙𝑜𝑔
1−𝑝

𝑝
 … (3.48) 

The knowledge of crossover probability P is necessary 

 
 

BI-AWGNC 

 
The model for Rayleigh fading channel is similar to that of the AWGNC: 𝑦𝑖 = 𝛼𝑖𝛽𝑖 + 
𝑛𝑖where {𝛼𝑖} are independent Rayleigh random variables with unity variance. The channel 

transition probability can be expressed by 

𝑃(𝑥𝑖 = 𝑥|𝑦𝑖) =
1

1 + exp (−4𝛼𝑖𝑦𝑖/𝑁0
…(3.49) 

Then 

𝐿(𝑐𝑖|𝑦𝑖) =
4𝛼𝑖𝑦𝑖

𝑁0
…(3.49) 

The estimates of 𝛼𝑖and 𝜎2are necessary in practice. 

Now, the stepwise procedure for the log domain sum product algorithm is given in the 

following Sect.8.8 
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𝑖,𝑗 

3.7.1 Log Domain Sum-Product Algorithm (SPA) 

 
Step 1: Initialization: for all i, initialize 𝐿𝑖according to Eq. (3.44) for the appropriate channel 

model. Then, for all i, j for which ℎ𝑖,𝑗 = 1 set 𝑀𝑗𝑖 = 𝐿𝑖and l = 0. Define 𝐵𝑖 to represent the set 

of bits in the j th parity check equation of H and 𝐴𝑖to represent the parity check equations for 

the i th bit of the code. 

Step 2: CN update: compute outgoing CN message 𝐸𝑗𝑖 for each CN using Eqs. (3.37), (3.38) 

and (3.39). 

                                                                          𝑀𝑗𝑖 = 𝛼𝑗𝑖 𝛽𝑗𝑖 
   

                                                                 𝛼𝑗𝑖 = 𝑠𝑖𝑔𝑛(𝑀𝑗𝑖) 

                     
                                                              𝛽𝑗𝑖 = |𝑀𝑗𝑖| 

𝐸𝑗𝑖 = ∏𝛼𝑗𝑖′

𝑖′

 . ∅ (∑ ∅
𝑖′

(𝛽𝑗𝑖′)) 

 

∅(𝑥) = − log [𝑡𝑎𝑛ℎ (
𝑥

2
)] = log(

𝑒𝑥 + 1

𝑒𝑥 − 1
) 

 
Step 3: LLR total: For 𝑖 = 0, 1, . . . , 𝑁 − 1 compute total LLR using Eq. (3.41) 
 

𝐿𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑖 + ∑ 𝐸𝑗𝑖

𝑗∈𝐴𝑖

 

Step 4: Stopping criteria: For 𝑖 = 0, 1, . . . , 𝑁 − 1 , set 

 

�̂�𝑖 = {
1 𝑖𝑓 𝐿𝑖

𝑡𝑜𝑡𝑎𝑙  < 0,

0 𝑒𝑙𝑠𝑒,
 

To obtain 𝑐 . If 𝑐 𝐻𝑡 = 0 or the number of iterations equals the maximum limit (𝑙 = 𝑙𝑚𝑎𝑥) 
stop; 

else 

Step 5: VN update: compute outgoing VN message 𝑀𝑗𝑖for each VN using Eq. (3.42) 

𝑀𝑗𝑖 = ∑𝑗′∈𝐴   ′≠𝑗 
𝐸𝑗′𝑖  + 𝐿𝑖. 𝑙 = 𝑙 + 1go to step 2. 

 
3.7.2 The Min-Sum Algorithm 

 
Consider Eq. (3.39) for 𝐸𝑗𝑖. It can be noted from the shape of ∅(𝑥)that the largest term in the 

sum corresponds to the smallest 𝛽𝑗𝑖. Hence, assuming that this term dominates the sum, the 

following relation is obtained 

                                        ∅(∑𝑖′ ∅(𝛽𝑗𝑖′ )) ≅ ∅ (∅ (min 𝛽𝑗𝑖′ )) = min 𝛽𝑗𝑖′ … (3.50) 
                                                                                                     𝑖′                       𝑖′ 

 

 
 

 
 

 

′ 
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                                                                                      𝑀𝑗𝑖 = 𝛼𝑗𝑖 𝛽𝑗𝑖 

 
                                                                            𝛼𝑗𝑖 = 𝑠𝑖𝑔𝑛(𝑀𝑗𝑖) 

 
                                                                         𝛽𝑗𝑖 = |𝑀𝑗𝑖| 
 

𝐸𝑗𝑖 = ∏𝛼𝑗𝑖′

𝑖′

 . ∅ (∑ ∅
𝑖′

(𝛽𝑗𝑖′)) 

 

 

It can also be shown that, in the AWGNC case, the initialization 𝑀𝑗𝑖 = 4 𝑦𝑖⁄𝑁0 may be 

replaced by 𝑀𝑗𝑖 = 𝑦𝑖when the simplified log domain sum product algorithm is employed. The 

advantage, of course, is that an estimate of the noise power 𝑁0 is unnecessary in this case. 

 

3.8 Performance Analysis of LDPC Codes 

 
3.8.1 Performance Comparison of Sum-Product and Min-Sum Algorithms for 

Decoding of Regular LDPC Codes in AWGN Channel 

 
The BER performance of the Sum-Product and Min-Sum LDPC decoding algorithms is 

evaluated through a computer simulation assuming that the channel adds white Gaussian noise 

to the code generated by a (256, 3, 6) regular parity check matrix. In this simulation, 
 

four hundred frames of each of length 256 and three iterations are used. The BER performance 

of the Sum-Product and Min-Sum Algorithms is shown in Fig. 3.4. 

 

 

 
                          Fig. 3.4 BER performance of Sum-Product and Min-Sum decoding algorithms 
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3.8.2 BER Performance Comparison of Regular and Irregular LDPC Codes in 

AWGN Channel 

 
The performance of rate 1/2 regular and irregular codes having the same length is evaluated 

through a computer simulation. The BER performance of the two codes is shown in Fig. 3.5. 

From Fig. 3.5, it is observed that there is no significant difference between the BER 

performance of the Sum-Product and the Min-Sum algorithms. The irregular codes can have 

improved thresholds for long codes but with an error floor at higher BER than for regular 

codes of the same rate and length. 

 
3.8.3 Effect of Block Length on the BER Performance of LDPC Codes in 

AWGN Channel 

 
The effect of block length on the performance of LDPC codes is illustrated through a computer 

simulation. In this experiment, two 1/2 rate irregular codes of block lengths 256, and 512 are 

considered and added white Gaussian noise to them, and the noisy codes are decoded using 

Min-Sum decoding algorithm with 10 iterations. The BER performance of the two codes is 

shown in Fig. 3.6 

 

Fig. 3.5BER performance of rate 1/2 regular and irregular LDPC codes using Min-Sum 

decoding algorithms 
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Fig. 3.6BER performance of rate 1/2 regular and irregular LDPC codes using Min-Sum 

Logarithm decoding algorithms 

 
3.8.4 Error Floor Comparison of Irregular LDPC Codes of Different Degree 

Distribution in AWGN Channel 

 
The error-floor of an LDPC code is characterized by the phenomenon that as the SNR 

continues to increase, the error probability suddenly drops at a rate much slower than that in 

the region of low to moderate SNR can be approximated by Johnson and Weller 

 

                                      𝐵𝐸𝑅 𝑒𝑓 ≈
2

𝑁

(λ2𝜌(1)′)
2

4
Q(√

4𝑅𝐸𝑏

𝑁0
) … . (3.51) 

 

with the constraint 𝜆2𝜌 1 ≤ 𝐸𝑒𝑥𝑝 ( 2), where  E  varies from 0  to 1, E  = 1  for  the 

traditional optimized degree distributions, E is greater than zero but less than 1 for constrained 

degree distributions, N is the length of the code and R is the code rate. A trade- off between 

the threshold and error floor can be achieved with the constrained distributions. 

 
3.9 Quasi Cyclic (QC)-LDPC CODES 

 
The principal property of QC-LDPC codes is that their parity check matrix consists of 

circulant sub matrices, which could be either based on the identity matrix or a smaller random 

matrix. The main advantage of this construction principle compared to randomly constructed 

codes is that QC-LDPC encoding procedure is easier to implement. The encoder of QC-LDPC 

codes can be implemented by using a series of shift registers, which allows its complexity to 

be proportional to code length QC-LDPC codes have been used widely in high-throughput 

systems, such as IEEE 802.16e, IEEE 802.11n, and IEEE 802.11ac, and  IEEE 802.11ad. 

QC-LDPC codes are very suitable for high-throughput and low-latency system. 

 
3.9.1 Brief Description of QC-LDPC Codes 

 
Let 𝐻𝑀×𝑁be the parity check matrix of a QC LDPC code. The 𝐻𝑀×𝑁matrix of consists of 

𝑚𝑏 rows and 𝑛𝑏 columns of sub matrices of size 𝑧 × 𝑧, where 𝑧 is a block size, 𝑀 = (𝑚𝑏 
× 𝑧) and 𝑁 = (𝑛𝑏 × 𝑧). A sub matrix is either a null matrix, or a circulate matrix obtained by 

shifting cyclically each row of an identity matrix to the right for p steps. Define 

 

                                            𝑃𝑧 ≜

[
 
 
 
 
0 1 0 ⋯0
0 0 1 ⋯0
⋮  ⋮  ⋮  ⋱   ⋮
0 0 0 ⋯1
1 0 0 ⋯0]

 
 
 
 

…(3.52) 

 
then, a sub matrix of size 𝑧 × 𝑧with shift step p, 0 ≤ 𝑝 ≤ 𝑧 − 1, is (𝑃𝑧)𝑃 the 𝑃th power of 

𝑃𝑧. Conventionally,  (𝑃𝑧)𝑃 is defined as identity matrix. 

 
A trivial example for the parity check matrix H with 𝑀 = 6, 𝑁 = 12, 𝑧 = 3, 𝑚 𝑏 = 
2, 𝑛 𝑏 = 4, which is portioned into 8 sub matrices is as shown 
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0 1 0 0 0 0 0 1 0 0 0 1 
0 0 1 0 0 0 0 0 1 1 0 0 

1 0 0 0 0 0 1 0 0 0 1 0 

1 0 0 0 1 0 0 0 1 0 0 0 
0 1 0 0 0 1 1 0 0 0 0 0 
0 0 1 1 0 0 0 1 0 0 0 0 

 
3.9.2 Base Matrix and Expansion 

 
Parity check matrix of a QC-LDPC code is often described by a 𝑚𝑏 × 𝑛𝑏 base 

matrix𝐵𝑚𝑏×𝑛𝑏
. The (i, j)-th entry of 𝐵𝑚𝑏×𝑛𝑏

, denoted by b(i, j) is 

 
                                    𝑏(𝑖, 𝑗) = −1 𝑖𝑓 𝐻𝑖,𝑗 = 0𝑧×𝑧… (3.52) 

 
                                    𝑏(𝑖, 𝑗) = 𝑝 𝑖𝑓 𝐻𝑖,𝑗 = (𝑃𝑧)𝑃… (3.53) 

 
3.9.3 Performance Analysis of QC-LDPC Codes over AWGN Channel 

 
The performance of QC-LDPC codes is illustrated through LDPC-IEEE 802.11n. The 

following base matrix for 𝑧 = 27 (𝑟𝑎𝑡𝑒 = 1/2 𝑚𝑏 = 12, 𝑛𝑏 = 24 ) specified in IEEE 802.11n 

standard is used in this illustration 

 
Base matrix = … 

           
 

[0 -1 -1 -1 0 0 -1 -1 0 -1 -1 0 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

22 0 -1 -1 17 -1 0 0 12 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 

6 -1 0 -1 10 -1 -1 -1 24 -1 0 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 

2 -1 -1 0 20 -1 -1 -1 25 0 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 

23 -1 -1 -1 3 -1 -1 -1 0 -1 9 11 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 

24 -1 23 1 17 -1 3 -1 10 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 

25 -1 -1 -1 8 -1 -1 -1 7 18 -1 -1 0 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 

13 24 -1 -1 0 -1 8 -1 6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 

7 20 -1 16 22 10 -1 -1 23 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 

11 -1 -1 -1 19 -1 -1 -1 13 -1 3 17 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 

25 -1 8 -1 23 18 -1 14 9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 

3 -1 -1 -1 16 -1 -1 2 25 5 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1  -1 0] 
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The QC-LDPC code is generated using efficient encoding method for LDPC codes. The 

decoding of QC-LDPC codes is performed based on High-Throughput LDPC Decoders. The 

following MATLAB Program 8.8 and a function program are written and executed for BER 

performance evaluation of QC-LDPC code with the above mentioned base matrix. The SNR 

versus BER performance with 15 and 30 iterations is shown in Fig. 3.7. 

                                 Fig: 3.7 BER performance of QC-LDPC IEEE 802.11n 
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4.1 LDPC ENCODING 

CHAPTER-4 

SYSTEM MODEL 

LDPC Codes are linear block codes, consists a parity check matrix “H”, which is a sparse 

i.e. consists more number of zeros (0’s) and less number of one’s (1’s). For an (n, k) LDPC 

code the size of H matrix was defined as (n-k) ×n where (n-k) is the number of rows; n is the 

number of columns and k is the number of messages bits. In (n, k) LDPC code w c and w r 

are considered a weight of the columns (number of 1’s in columns) and weight of the rows 

(number of 1’s in rows). 

Based on the w c and w r LDPC codes are classified into two types. The number of 1’s in each 

columns and rows are equal then it is called regular LDPC codes otherwise it is called irregular 

LDPC codes. For a regular code, we have (n-k)*wr = n wc, thus wc<wr. If all rows are linearly 

independent, the code rate (R) is; otherwise, it is k/n. Typically, wc ≥3 at parity check matrix 

with minimum column weight wc will have a minimum distance dmin≥wc+1. A parity-check 

matrix H for an (10, 5) LDPC code with wc = 3 and wr = 6 is shown in Eq 3.1 

𝐻 =

[
 
 
 
 
1 1 0 0 1 1 1 1 0 0 
1 0 1 1 0 1 0 1 0 1
0 1 0 1 1 0 0 1 1 1
1 0 1 0 1 0 1 0 1 1
0 1 1 1 0 1 1 0 1 0]

 
 
 
 

… (4.1) 

 

LDPC codes are also represented by Tanner graphs, which are proposed by Tanner in 1981. 

For an (n, k)parity check matrix H, the number of check nodes C 1 , C 2 , C 3 ,…..C n-k are 

corresponded to the rows of the parity-check matrix H and bit nodes B 1 , B 2 , B 3 ,…..B n 

corresponded to the columns of the parity-check matrix H. A Tanner graph for Eq (3.1) is 

shown in figure (4.1) 

The stepwise procedure of LDPC encoding along with an example 

Step: 1 Consider a parity check matrix H for an (10, 5) LDPC code. 

                                                                              1 1 0 0 1 1 1 1 0 0 
                                                                                    1 0 1 1 0 1 0 1 0 11 

H= 0 1 0 1 1 0 0 1 1 1 
    1 0 1 0 1 0 1 0 1 1      
0 1 1 1 0  1 1 0 1 0  

… (4.2) 
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Figure: 4.1 Graphical representation of (10, 5) LDPC code. 
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                                Figure 4.2: Encoding and Decoding System Model for NR-LDPC 
 

Step: 2 Let ‘K’ be the message signal of size 1×k, K = [1 0 0 0 1] and the code word ‘CW’ 

of size 1×n, along with n-k parity bits CW = [1 0 0 0 1 P1 P2P3P4P5]. 

For obtaining double diagonal encoding consider (n-k) × (n-k) at the extreme end of the H 

matrix. 
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Step: 3 Now by performing row and column permutations on (n-k) × (n-k) matrix, the non- 

singular parity check matrix H is brought into double diagonal structure. Where (n-k) × (n-k) 

matrix contains 1’s along any two diagonals. Let the resultant matrix be . 

𝐻𝑑 =

[
 
 
 
 
1 1 0 0 1 1 1 1 0 0 
1 0 1 1 0 1 0 1 0 1
0 1 0 1 1 0 1 1 1 0
1 0 1 0 1 0 1 0 1 1
0 1 1 1 0 1 0 0 1 1]

 
 
 
 

… (4.3) 

Step: 4 Multiply Hd ∗ CWT = 0 …..(4.4) 

On solving the (Eq 4.4) the following expressions are obtained. 

P1 + P2 + P3 = 0 … (4.5) 

1 + P1 + P3 + P5 = 0 … (4.6) 

1 + P2 + P3 + P4 = 0 … (4.7) 

P2 + P4 + P5 = 0 … (4.8) 

P1 + P4 + P5 = 0 … (4.9) 

By simplifying the above expressions 

P1 = 0, P2 = 0, P3 = 0, P4 = 1 and P5 = 1. 

Therefore for the message K = [1 0 0 0 1] the LDPC encoded output C= [1 0 0 0 1 0 0 0 11] 

4.2 LDPC DECODING: 

 

Bit-Flip decoding algorithm: 

The received signals are decoded into 1’s and 0’s in order to form a vector Y. It computes all 

check sums and the number of unfulfilled parity checks involving each of the n bits of the 

vector Y in each and every iteration. The bits of Y are then flipped .The procedure must be 

performed until all check sums have been satisfied or a predefined number of iterations has 

been reached. The Bit-flipping decoding algorithm's step-by-step approach is as follows: 

 

Step 1. Let N = Y, defining Cj in order to represent the jth parity check equation of S 

Step 2. K= 0  

Step 3. Compute all check sums by the expression 

𝐸𝑗,𝑖 = ∑ (𝑁𝑖′  𝑚𝑜𝑑 2)𝑖′∈𝑐𝑗,𝑖′≠𝑖
      ….(4.1) 

Step 4. Check the number of unsatisfied parity check bits. 

Step 5. Flip the bits of message when they are large number of unsatisfied parity checks. The 

flipping on i th bit can be performed by 

𝑁𝑖 = (𝑦𝑖 + 1mod 2)   …(4.2) 
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Step 6.Compute s as follows 

𝑠 = (𝑁𝑆𝑇)𝑚𝑜𝑑2         …(4.3) 

Step 7.If s = 0 or K = K max, stop, else 

Step 8.K= K+ 1, go to Step 3 

 

Log Domain Sum-Product algorithm: 

Step1. Initialize i and j for which 𝑀𝑗𝑖 = 𝐿𝑖,  and l =0. Define Bj and Ai in order to set the bits in jth 

and ith parity check matrix S respectively. 

Step2. 

                                                                  𝑀_𝑗𝑖 = 𝛼_𝑗𝑖 𝛽_𝑗𝑖       ….(4.4) 

αji = sign(Mji)…..(4.5) 

βji = |Mji|          ….(4.6) 

𝐸𝑗𝑖 = ∏ 𝛼𝑗𝑖′𝑖′  . ∅ (∑ ∅𝑖′ (𝛽𝑗𝑖′))                  …(4.7) 

∅(x) = − log [tanh (
x

2
)] = log (

ex+1

ex−1
)     …(4.8) 

Step 3. Calculate LLR total For i = 0, 1,..., N − 1  

Li
total = Li + ∑ Ejij∈Ai

      …(4.9) 

Step 4.In order to Stop the criteria For i = 0, 1,..., N − 1, set 

Ĉi = {
1 if Li

total < 0,

0 else,
     ...(4.10) 

 

To obtain �̂�. If 𝑐 𝐻𝑇 = 0 or the number of iterations equals the maximum limit (l = l max,) 

stop; 

else  

Step 5. calculate 

 

                   𝑀𝑗𝑖 = 𝐿𝑖 + ∑ 𝐸𝑗′𝑖. 𝑙 = 𝑙 + 1𝑗′∈𝐴𝑗,𝑖′≠𝑗𝑖
       …(4.11) 

 

 

Min-Sum decoding algorithm: 

Step1: The shape of φ(x) that the largest term in the sum corresponds to the smallest βji and 

it is assumed that it dominates the sum. Thus the following relation defined. 
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                                          ∅ (∑ ∅𝑖′ (𝛽𝑗𝑖′)) ≃ ∅(∅(min
𝑖′

𝛽𝑗𝑖′)) = min
𝑖′

𝛽𝑗𝑖′      …(4.12) 

Thus, the Min-Sum algorithm is same as the log domain sum product algorithm with Step 2 

replaced by 

 

                                                                              𝑀𝑗𝑖 = 𝛼𝑗𝑖𝛽𝑗𝑖        ...(4.13) 

                                                                           𝛼𝑗𝑖 = sign(𝑀𝑗𝑖)              …(4.14) 

                                                                           𝛽𝑗𝑖 = |𝑀𝑗𝑖|      …(4.15) 

                                                                    𝐸𝑗𝑖 = ∏ 𝛼𝑗𝑖′ .min
𝑖′

𝛽𝑗𝑖′     𝑖′ …(4.16) 
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5.1 MATLAB Introduction 

CHAPTER-5 

MATLAB

 

 

MATLAB is a high performance language for technical computing. It integrates computation 

visualization and programming in an easy to use environment. MATLAB stands for matrix 

laboratory. It was written originally to provide easy access to matrix software developed by 

LINPACK (linear system package) and EISPACK (Eigen system package) projects. 

MATLAB is therefore built on a foundation of sophisticated matrix software in which the 

basic element is matrix that does not require pre dimensioning. 

Typical uses of MATLAB 

1. Math and computation 

2. Algorithm development 

3. Data acquisition 

4. Data analysis, exploration and visualization 

5. Scientific and engineering graphics 

The main features of MATLAB 

1. Advanced algorithm for high performance numerical computation, especially in the 

Field matrix algebra 

2. A large collection of predefined mathematical functions and the ability to define one's 

own functions. 

3. Two-and three dimensional graphics for plotting and displaying data 

4. A complete online help system 

5. Powerful matrix or vector oriented high level programming language for individual 

applications. 

6. Toolboxes available for solving advanced problems in several application areas. 

5.2 The MATLAB System 

The MATLAB System consists of five main parts 

• Development Environment: 

This is the set of tools and facilities that help you use MATLAB functions and files. Many 

of these tools are graphical user interfaces. It includes the MATLAB desktop and Command 

Window, command history an editor and debugger, and browsers for viewing help the 

workspace, files, and the search path. 
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• The MATLAB Mathematical Function Library: 

This is a vast collection of computational algorithms ranging from elementary functions, like 

sum sine, cosine, and complex arithmetic, to more sophisticated functions like matrix inverse, 

matrix Eigen values, Bessel functions, and fast Fourier transforms. 

• The MATLAB Language: 

This is a high-level matrix/array language with control flow statements, functions, data 

structures, input/output, and object-oriented programming features. It allows both 

programming in the small to rapidly create quickly programs, and "programming in the large" 

to create large and complex application programs. 

• Graphics: 

MATLAB has extensive facilities for displaying vectors and matrices as graphs, as well as 

annotating and printing these graphs. It includes high-level functions for two-dimensional and 

three dimensional data visualization, video processing, animation, and presentation graphics. 

It also includes low-level functions that allow you to fully customize the appearance of 

graphics as well as to build complete graphical user interfaces on your MATLAB applications 

• The MATLAB Application Program Interface (API): 

This is a library that allows you to write C and Fortran programs that interact with MATLAB. 

It includes facilities for calling routines from MATLAB (dynamic linking), calling MATLAB 

as a computational engine, and for reading and writing MAT-files 

5.3 Starting MATLAB: 

On Windows platforms, start MATLAB by double-clicking the MATLAB shortcut icon on 

your Windows desktop. On UNIX platforms, start MATLAB by typing mat lab at the 

operating system prompt. You can customize MATLAB start-up. 

For example, you can change the directory in which MATLAB starts or automatically execute 

MATLAB statements in a script file named start-ups. 

5.4 MATLAB Desktop: 

When you start MATLAB, the MATLAB desktop appears, containing tools (graphical user 

interfaces) for managing files, variables, and applications associated with MATLAB. The 

following illustration shows the default desktop. You can customize the arrangement of 

tools and documents to suit your needs. 
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5.5 MATLAB Working Environment 

• MATLAB Desktop: 

MATLAB Desktop is the main MATLAB application window. The desktop contains five sub 

windows the command window, the workspace browser the current directory window, the 

command history window, and one or more figure windows, which are shown only when the 

user displays a graphic. 

The command window is where the user types MATLAB commands and expressions 

at the prompt (>>) and where the output of those commands is displayed. MATLAB defines 

as the workspace as the set of variables that the user creates in a work session. The workspace 

browser shows these variables and some information about them. Double clicking on a 

variable in the workspace browser launches the Array Editor, which can be used to obtain 

information and income instances edit certain properties of the variable. 

The current Directory tab above the workspace tab shows the contents of the current 

directory, whose path is shown in the current directory window. For example, in the windows 

operating system the path might be as follows: C-MATLAB Work, indicating that directory 

"work" is a subdirectory of the main directory MATLAB WHICH IS INSTALLED IN DRIVE 

C. clicking on the arrow in the current directory window shows a list of recently used paths. 

Clicking on the button to the right of the window allows the user to change the current 

directory. 

MATLAB uses a search path to find M-files and other MATLAB related files, which 

are organize in directories in the computer file system. Any file run in MATLAB must reside 

in the current directory or in a directory that is on search path. By default, the files supplied 

with MATLAB and math works toolboxes are included in the search path. The easiest way to 

see which directories is on the search path. The easiest way to see which directories are soon 

the search paths, or to add or modify a search path, is to select set path from the File menu the 

desktop, and then use the set path dialog box. It is good practice to add any commonly used 

directories to the search path to avoid repeatedly having the change the current directory. 

The Command History Window contains a record of the command window, 

including both current and previous MATLAB sessions. Previously entered MATLAB 

commands can be selected and re-executed from the command History window by right 

clicking on a command or sequence of commands. This action launches a menu from which 

to select various options in addition to executing the commands. This is a use to select 
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various options in addition to executing the commands. This is useful feature when 

experimenting with various commands in a work session. 

• Using the MATLAB Editor to create M-Files: 

The MATLAB editor is both a text editor specialized for creating M-files and 

graphical MATLAB debugger. The editor can appear in a window by itself, or it can be a sub 

window in the desktop, M-files are denoted by the extension m The MATLAB editor window 

has numerous pull-down menus for tasks such as saving viewing, and debugging files. 

Because it performs some simple checks and also uses color to differentiate between various 

elements of code, this text editor is recommended as the tool of choice for writing and editing 

M functions. To open the editor, type edit at the prompt opens the M-file filenames in an editor 

window ready for editing. As noted earlier the file must be in the current directory, or in a 

directory in the search path 

• Getting Help: 

The principle way to get help online is lo use the MATLAB help browser, opened as a separate 

window either by clicking on the question mark symbol (?) on the desktop toolbar, or by 

typing help browser at the prompt in the command window. The help Browser is a web 

browser integrated into the MATLAB desktop that displays a Hypertext Markup Language 

(HTML) documents. The Help Browser consists of two panes, the help navigator pane, used 

to find information, and the display pane, used to view the information. Self- explanatory tabs 

other navigator pane are used to perform a scratch. 

For example, help on a specific function is obtained by selecting the search tab, 

selecting Function Name as the Search Type, and then typing in the function name in the 

Search for field. It is good practice to open the Help Browser at the beginning of a MATLAB 

session to have help readily available during code development or other MATLAB task. 

Another way to obtain for a specific function is by typing doc followed by the 

function name at the command prompt. For example, typing doc format displays 

documentation for the function called format in the display pane of the Help Browser. This 

command opens the browser if it is not already open. 

M-functions have two types of information that can be displayed by the user The 

first is called the HI line, which contains the function name and alone line description the 

second is a block of explanation called the Help text block. Typing help at the prompt followed 

by a function name displays both the HI line and the Help text for that function in there 

command window. 
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Typically look for followed by a keyword displays all the HI lines that contain 

that keyword. This function is useful when looking for a particular topic without knowing 

the names of applicable functions. For example, typing look for edge at the prompt displays 

the HI lines containing that keyword. Because the HI line contains the function name, it then 

becomes possible to look at specific functions using the other help methods. Typing look for 

edge-all at the prompt displays the HI line of all functions that contain the word edge in cither 

the HI line or the Help text block. Words that contain the characters edge also are detected. 

For example, the HI line of a function containing the word poly edge in the H1 line or Help 

text would also be displayed. 

 

5.6 Saving and Retrieving a Work Session 

There are several ways to save and load an entire work session or selected workspace variables 

in MATLAB. The simplest is as follows. 

To save the entire workspace, simply right-click on any blank space in the workspace 

Browser window and select Save Workspace as from the menu that appears. This opens a 

directory window that allows naming the file and selecting any folder in the system in which 

to save it. Then simply click Save To save a selected variable from the workspace, select the 

variable with a left click and then right-click on the highlighted area. Then select Save 

Selection As from the menu that appears. This again opens a window from which a folder can 

be selected to save the variable. 

To select multiple variables, use shift click or control click in the familiar manner, 

and then use the procedure just described for a single variable. All files are saved in the double-

precision, binary format with the extension mat. These saved files commonly are referred to 

as MAT-files. For example, a session named, says mywork_2012-02-10, and would appear as 

the MAT-file mywork_2012_02_10.mat when saved. Similarly, a saved video called final 

video will appear when saved as final_ video.mat. 

To load saved workspaces and/or variables, left-click on the folder icon on the toolbar of the 

workspace Browser window. This causes a window to open from which a folder containing 

MAT-file or selecting open causes the contents of the file to be restored in the workspace 

Browser window. It is possible to achieve the same results described in the preceding 

paragraphs by typing save and load at the prompt with the appropriate file names and path 

information. This approach is not as convenient, but it is used when formats other than those 

available in the menu method are required. 

• Graph Components: 
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MATLAB displays graphs in a special window known as a figure. To create a graph, 

you need to define a coordinate system. Therefore every graph is placed within Axes, which 

are contained by the figure. The actual visual representation of the data is achieved with 

graphics objects like lines and surfaces. These objects are drawn within the coordinate system 

defined by the axes, which MATLAB automatically creates specifically to accommodate the 

range of the data. The actual data is stored as properties of the graphics objects. 

• Plotting Tools 

Plotting tools are attached to figures and create an environment for creating Graphs. 

These tools enable you to do the following: 

• Select from a wide variety of graph types 

• Change the type of graph that represents a variable 

• See and set the properties of graphics objects 

• Annotate graphs with text, arrows, etc. 

• Drag and drop data into graphs 

Display the plotting tools from the View menu or by clicking the plotting tools 

icon in the figure toolbar, as shown in the following picture. 

• Editor/Debugger 

Use the Editor/Debugger to create and debug M-files, which are programs you write to run 

MATLAB functions. The Editor/Debugger provides a graphical user interface for text editing, 

as well as for M-file debugging. 

To create or edit an M-file use File > New or File > Open, or use the edit function. 
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CHAPTER-6 

SIMULATION RESULTS 

 

This project focuses on reducing the Bit error rate and Frame error rate using LDPC 

decoding techniques and comparing the bit error rate and frame characteristics between the 

proposed algorithms (i.e. Bit flip, Min-sum, Normal min-sum, Mod min-sum and Log-sum 

product). MATLAB 2021a is used to analyze decoding algorithms, with the following 

parameters. Simulation results shows bit error rate and frame error rate performances and how 

the BER, FER characteristics of LDPC decoding algorithms are varied based on different 

parameters (i.e. Number of iterations, Expansion Factor, Number of Blocks) 

 

MATLAB 2021a is used to analyze decoding algorithms, with the following parameters.  

 

 

 

Parameter Specifications 

Decoding Methods Min-sum, Mod Min-sum, Log Sum-Product, 

Bit Flip, Normal Min-Sum 

Number of iterations 10,20 

Expansion factor 2,32,64 

Number of blocks 10 

SNR range 1-3dB 
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        BIT ERROR RATE: 
 

             

            Table-1: Number of iterations =10, Expansion factor = 2; 

 

Eb/No(SNR) Bit-Flip Normal Min 

Sum 

Min Sum Mod Min Sum LogSum- 

Product 

1 0.3677 0.0744141 0.10723 0.0761719 0.0841797 

1.3 0.3650 0.0675451 0.09845 0.0675682 0.0758353 

1.5 0.356 0.0562305 0.74941 0.0517969 0.0605664 

1.7 0.3540 0.0415678 0.05678 0.0384692 0.0456382 

2 0.3531 0.0312109 0.0396 0.0247005 0.0295247 

2.3 0.3470 0.0278901 0.02345 0.0164839 0.0178362 

2.5 0.3465 0.0120182 0.01225 0.00671387 0.00897624 

2.7 0.3367 0.01100012 0.011789 0.00549278 0.0063829 

3 0.3246 0.00200195 0.00083 0.000390625 0.000683594 

 

 

 

            Table-2: Number of iterations =10, Expansion factor =32; 

 

Eb/No(SNR) Bit-Flip Normal Min 

Sum 

Min Sum Mod Min Sum LogSum- 

Product 

1 1 0.0720703 0.10313 0.072073 0.0845703 

1.3 1 0.0639821 0.09638 0.069263 0.0783992 

1.5 1 0.0538086 0.07311 0.0484375 0.0577734 

1.7 1 0.0474281 0.05219 0.037289 0.0473646 

2 1 0.0284675 0.0362 0.0204622 0.0266146 

2.3 1 0.0174531 0.02849 0.018273 0.0189238 

2.5 1 0.00951986 0.0096 0.00459635 0.0068180 

2.7 1 0.0073856 0.00735 0.002789 0.0058909 

3 1 0.00107422 0.00068 0.000195313 0.000292969 

 

 

 

 

            Table-3: Number of iterations =10, Expansion factor = 64; 

 

Eb/No(SNR) Bit-Flip Normal  Min 

Sum 

Min Sum Mod Min Sum LogSum- 

Product 

1 1 0.0716797 0.10801 0.0716797 0.0873047 

1.3 1 0.0637282 0.09378 0.0683652 0.0783654 

1.5 1 0.0521094 0.07127 0.0451742 0.0549414 

1.7 1 0.0371894 0.05356 0.0323891 0.0367181 

2 1 0.0263281 0.03407 0.0176888 0.0240104 

2.3 1 0.0156782 0.02671 0.0091518 0.0167361 

2.5 1 0.0077262 0.00844 0.0033414 0.005585594 

2.7 1 0.0057832 0.00645 0.0021781 0.00467284 

3 1 0.000781125 0.00034 4.8805 0.000146484 
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            Table-4: Number of iterations =20, Expansion factor = 2; 

 

Eb/No(SNR) Bit-Flip Normal Min 

Sum 

Min Sum Mod Min Sum LogSum- 

Product 

1 1 0.0677734 0.10879 0.0603516 0.0734375 

1.3 1 0.0583741 0.09161 0.0503451 0.0627931 

1.5 1 0.0456445 0.06768 0.0353906 0.0496289 

1.7 1 0.0215673 0.05382 0.0217389 0.0283672 

2 1 0.0192708 0.02045 0.00880859 0.0179427 

2.3 1 0.0022623 0.01734 0.0056835 0.0093567 

2.5 1 0.00341471 0.00566 0.000727539 0.00287109 

2.7 1 0 0 0 0 

3 1 0 0 0 0 

 

 

 

             Table-5: Number of iterations =20, Expansion factor = 32; 

 

Eb/No(SNR) Bit-Flip Normal Min 

Sum 

Min Sum Mod Min Sum LogSum- 

Product 

1 1 0.97 0.91 0.87 0.78 

1.3 1 0.91 0.85 0.78 0.65 

1.5 1 0.81 0.69 0.57 0.47 

1.7 1 0.65 0.59 0.38 0.26 

2 1 0.44 0.36 0.27 1.36667 

2.3 1 0.33 0.23 0.19 0.06732 

2.5 1 0.109167 0.08417 0.0483333 0.0141667 

2.7 1 0 0 0 0 

3 1 0 0 0 0 

 

 

 

 

 

            Table-6: Number of iterations =20, Expansion factor = 64; 

 

Eb/No (SNR) Bit-Flip Normal Min 

Sum 

Min Sum Mod Min Sum LogSum -

Product 

1 1 0.98 0.95 0.83 0.75 

1.3 1 0.88 0.84 0.75 0.63 

1.5 1 0.77 0.65 0.52 0.41 

1.7 1 0.64 0.42 0.44 0.33 

2 1 0.40 0.33 0.21 0.11 

2.3 1 0.35 0.21 0.10 0.00915 

2.5 1 0.089 0.0725 0.0375 0.0091 

2.7 1 0 0 0 0 

3 1 0 0 0 0 
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         FRAME ERROR RATE: 
 

 

 

           Table-7: Number of iterations =10, Expansion factor = 2; 

 

Eb/No(SNR) Bit-Flip Normal Min 

Sum 

Min Sum Mod Min Sum LogSum- 

Product 

1 1 1 1 1 1 

1.3 1 1 1 1 1 

1.5 1 1 1 0.99 0.98 

1.7 1 0.9734 0.97 0.96 0.95 

2 1 0.93333 0.88 0.826667 0.803333 

2.3 1 0.86 0.75 0.784 0.7376 

2.5 1 0.705 0.57417 0.485833 0.4225 

2.7 1 0.567 0.345 0.2831 0.289 

3 1 0.3 0.05 0.05 0.05 

 

 

 

             Table-8: Number of iterations =10, Expansion factor = 32; 

 

Eb/No(SNR) Bit-Flip Normal Min 

Sum 

Min Sum Mod Min Sum LogSum- 

Product 

1 1 1 1 1 1 

1.3 1 0.99 0.99 0.98 0.97 

1.5 1 0.99 0.97 0.96 0.93 

1.7 1 0.90 0.87 0.89 0.78 

2 1 0.88 0.78333 0.72 0.65667 

2.3 1 0.79 0.58 0.65 0.48 

2.5 1 0.575833 0.43 0.3475 0.279167 

2.7 1 0.37 0.36 0.19 0.19 

3 1 0.15 0.05 0.05 0.05 

 

 

 

 

 

            Table-9: Number of iterations =10, Expansion factor = 64; 

 

Eb/No(SNR) Bit-Flip Normal Min 

Sum 

Min Sum Mod Min Sum LogSum- 

Product 

1 1 1 1 1 0.9 

1.3 1 0.99 0.98 0.99 0.89 

1.5 1 0.99 0.97 0.9 0.88 

1.7 1 0.89 0.86 0.87 0.78 

2 1 0.83 0.72 0.61 0.56 

2.3 1 0.68 0.56 0.54 0.37 

2.5 1 0.48 0.33 0.25 0.19 

2.7 1 0.28 0.18 0.10 0.09 

3 1 0.12 0.05 0.05 0.025 
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            Table-10: Number of iterations =20, Expansion factor = 32; 

 

Eb/No(SNR) Bit-Flip Normal Min 

Sum 

Min Sum Mod Min Sum LogSum- 

Product 

1 1 0.9 0.9 0.8 0.8 

1.3 1 0.89 0.89 0.71 0.71 

1.5 1 0.84 0.78 0.63 0.52 

1.7 1 0.79 0.67 0.59 0.45 

2 1 0.54333 0.41667 0.326667 0.2 

2.3 1 0.38 0.27 0.29 0.10 

2.5 1 0.156667 0.10417 0.733333 0.0275 

2.7 1 0 0 0 0 

3 1 0 0 0 0 

 

 

 

            Table-11: Number of iterations =20, Expansion factor = 32; 

 

Eb/No(SNR) Bit-Flip Normal Min 

Sum 

Min Sum Mod Min Sum LogSum- 

Product 

1 1 0.9 0.9 0.8 0.7 

1.3 1 0.87 0.79 0.79 0.69 

1.5 1 0.81 0.69 0.57 0.47 

1.7 1 0.68 0.46 0.49 0.35 

2 1 0.44 0.36 0.27 0.13666 

2.3 1 0.22 0.28 0.10 0.09856 

2.5 1 0.109167 0.08472 0.0483333 0.0141667 

2.7 1 0 0 0 0 

3 1 0 0 0 0 

 

 

 

 

 

            Table-12: Number of iterations =10, Expansion factor = 64; 

 

Eb/No(SNR) Bit-Flip Normal Min 

Sum 

Min Sum Mod Min Sum LogSum- 

Product 

1 1 0.9 0.9 0.8 0.7 

1.3 1 0,86 0.89 0.79 0.54 

1.5 1 0.77 0.65 0.52 0.41 

1.7 1 0,58 0.45 0.43 0.28 

2 1 0.40 0.33 0.21 0.11 

2.3 1 0.35 0.10 0.17 0.00945 

2.5 1 0.08 0.0725 0.03 0.00916 

2.7 1 0 0 0 0 

3 0 0 0 0 0 
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Table:1 demonstrates BER performance of different LDPC decoding algorithms like Mod 

Min-Sum, Normal Min-Sum, Min-Sum, Bit Flip and Log Sum-Product algorithms for 10 

number of iterations and with expansion factor 2. As the SNR increases from 1 to 3,the BER 

gradually decreasing. For example if we consider Bit flip decoding algorithm it is decreasing 

from 0.3677 to 0.3246. 

 

Table:2 demonstrates BER performance of different LDPC decoding algorithms like Mod 

Min-Sum, Normal Min-Sum, Min-Sum, Bit Flip and Log Sum-Product algorithms for 10 

number of iterations and with expansion factor 32. As the SNR increases from 1 to 3, the BER 

gradually decreasing for all other decoding algorithms except Bit flip decoding algorithm 

which maintains a constant BER. For example if we consider Min-Sum decoding algorithm it 

is decreasing from 0.10313to0.00068. 

 

Table:3 demonstrates BER performance of different LDPC decoding algorithms like Mod 

Min-Sum, Normal Min-Sum, Min-Sum, Bit Flip and Log Sum-Product algorithms for 10 

number of iterations and with expansion factor 64. As the SNR increases from 1 to 3, the BER 

gradually decreasing for all other decoding algorithms except Bit flip decoding algorithm 

which maintains a constant BER. For example if we consider Min-Sum decoding algorithm it 

is decreasing from 0.10801to 0.00034. 

 

Table:4 demonstrates BER performance of different LDPC decoding algorithms like Mod 

Min-Sum, Normal Min-Sum, Min-Sum, Bit Flip and Log Sum-Product algorithms for 20 

number of iterations and with expansion factor 2. As the SNR increases from 1 to 3, the BER 

gradually decreasing for all other decoding algorithms except Bit flip decoding algorithm 

which maintains a constant BER. For example if we consider Min-Sum decoding algorithm it 

is decreasing from 0.10879to 0. 

 

Table:5 demonstrates BER performance of different LDPC decoding algorithms like Mod 

Min-Sum, Normal Min-Sum, Min-Sum, Bit Flip and Log Sum-Product algorithms for 20 

number of iterations and with expansion factor 32. As the SNR increases from 1 to 3, the BER 

gradually decreasing for all other decoding algorithms except Bit flip decoding algorithm 

which maintains a constant BER. For example if we consider Min-Sum decoding algorithm it 

is decreasing from 0.91to 0. 
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Table:6 demonstrates BER performance of different LDPC decoding algorithms like Mod 

Min-Sum, Normal Min-Sum, Min-Sum, Bit Flip and Log Sum-Product algorithms for 20 

number of iterations and with expansion factor 64. As the SNR increases from1 to 3, the BER 

gradually decreasing for all other decoding algorithms except Bit flip decoding algorithm 

which maintains a constant BER. For example if we consider Min-Sum decoding algorithm it 

is decreasing from 0.95to 0. 

 

Table:7 demonstrates FER performance of different LDPC decoding algorithms like Mod 

Min-Sum, Normal Min-Sum, Min-Sum, Bit Flip and Log Sum-Product algorithms for 10 

number of iterations and with expansion factor 2. As the SNR increases from 1 to 3, the FER 

gradually decreasing for all other decoding algorithms except Bit flip decoding algorithm 

which maintains a constant FER. For example if we consider Min-Sum decoding algorithm it 

is decreasing from 1 to 0.05. 

 

Table:8 demonstrates FER performance of different LDPC decoding algorithms like Mod 

Min-Sum, Normal Min-Sum, Min-Sum, Bit Flip and Log Sum-Product algorithms for 10 

number of iterations and with expansion factor 32. As the SNR increases from 1 to 3, the FER 

gradually decreasing for all other decoding algorithms except Bit flip decoding algorithm 

which maintains a constant FER. For example if we consider Min-Sum decoding algorithm it 

is decreasing from 1to 0.05. 

 

Table:9 demonstrates FER performance of different LDPC decoding algorithms like Mod 

Min-Sum, Normal Min-Sum, Min-Sum, Bit Flip and Log Sum-Product algorithms for 10 

number of iterations and with expansion factor 64. As the SNR increases from 1 to 3, the FER 

gradually decreasing for all other decoding algorithms except Bit flip decoding algorithm 

which maintains a constant FER. For example if we consider Min-Sum decoding algorithm it 

is decreasing from 1to 0.05. 

 

Table:10 demonstrates FER performance of different LDPC decoding algorithms like Mod 

Min-Sum, Normal Min-Sum, Min-Sum, Bit Flip and Log Sum-Product algorithms for 20 

number of iterations and with expansion factor 2. As the SNR increases from 1 to 3, the FER 

gradually decreasing for all other decoding algorithms except Bit flip decoding algorithm 

which maintains a constant FER. For example if we consider Min-Sum decoding algorithm it 

is decreasing from 0.9to 0. 
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Table:11 demonstrates FER performance of different LDPC decoding algorithms like Mod 

Min-Sum, Normal Min-Sum, Min-Sum, Bit Flip and Log Sum-Product algorithms for 20 

number of iterations and with expansion factor 32. As the SNR increases from 1 to 3, the FER 

gradually decreasing for all other decoding algorithms except Bit flip decoding algorithm 

which maintains a constant FER. For example if we consider Min-Sum decoding algorithm it 

is decreasing from 0.9to 0. 

 

Table:12 demonstrates FER performance of different LDPC decoding algorithms like Mod 

Min-Sum, Normal Min-Sum, Min-Sum, Bit Flip and Log Sum-Product algorithms for 20 

number of iterations and with expansion factor 64. As the SNR increases from 1 to 3, the FER 

gradually decreasing for all other decoding algorithms except Bit flip decoding algorithm 

which maintains a constant FER. For example if we consider Min-Sum decoding algorithm it 

is decreasing from 0.9to 0. 
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Bit Error Rate: 

 
Figure 1: BER of different LDPC decoding algorithms with number of iterations=10, number of 

blocks=10 and Expansion factor=2. 

 
 Figure 2: BER of different LDPC decoding algorithms with number of iterations=10, number of 

blocks=10 and Expansion factor=32. 
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Figure 3: BER of different LDPC decoding algorithms with number of iterations=10, number of 

blocks=10 and Expansion factor=64. 

 
Figure 4: BER of different LDPC decoding algorithms with number of iterations=20, number of 

blocks=10 and Expansion factor=2. 
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Figure 5: BER of different LDPC decoding algorithms with number of iterations=20, number of 

blocks=10 and Expansion factor=32. 

 
Figure 6: BER of different LDPC decoding algorithms with number of iterations=20, number of 

blocks=10 and Expansion factor=64. 
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Frame Error Rate: 

 

 
Figure 7: FER of different LDPC decoding algorithms with number of iterations=10, number of 

blocks=10 and Expansion factor=2. 
 

 
Figure 8: FER of different LDPC decoding algorithms with number of iterations=10, number of 

blocks=10 and Expansion factor=32. 
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Figure 9: FER of different LDPC decoding algorithms with number of iterations=10, number of 

blocks=10 and Expansion factor=64. 
 

 

Figure 

Figure 10: FER of different LDPC decoding algorithms with number of iterations=20, number of 

blocks=10 and Expansion factor=2. 
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Figure 11: FER of different LDPC decoding algorithms with number of iterations=20, number of 

blocks=10 and Expansion factor=32. 

 
Figure 12: FER of different LDPC decoding algorithms with number of iterations=20, number of 

blocks=10 and Expansion factor=64. 
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   CONCLUSION: 
 

                      As the number of iterations and expansion factor increases, the BER and FER 

are gradually decreasing with an increase in SNR. On comparing between these decoding 

algorithms Mod Min-Sum decoding algorithm gives better BER performance and Log Sum-

Product algorithm gives better FER performance. 

 

 

              FUTURE SCOPE: 

                       Latency is the one of the main services offered by 5G communications. As per 

ITU the standard latency offered by 5G communication is ≤ 1msec. This project mainly 

focuses on BER and FER performances of different LDPC decoding algorithms for next 

generation wireless communications. In future this work can be extended by calculating better 

latency decoding algorithms. Different channels can be used in order to improve performance. 
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